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Abstract Chloride ion penetration resistance (CIPR) is a critical concern in engineering to ensure
the long-term durability of concrete structures, accurately predicting concrete CIPR is
essential for designing the appropriate mix ratio. The rapid chloride migration (RCM)
test is the most commonly used experimental method, typically employed to measure
CIPC. To efficiently and accurately predict the CIPR of concrete, a Bayesian Optimization
(BO)-Light Gradient Boosting Machine (LGBM) model is developed. Through this
research, it can be concluded that (1) BO can effectively search and optimize the
hyperparameters in LGBM. Within 100 iterations, BO optimization can search the
hyperparameters effectively and find the optimal solution quickly.(2) BO-LGBM has a
strong predictive ability, and its prediction accuracy is superior than the other three
prediction models. The outcomes indicate that the application of this model has
important practical significance for predicting the CIPC of concrete, optimizing the
design of the concrete mix ratio and improving the durability of concrete.
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Introduction

Segments are essential components in shield tunnel construction. Chloride is a significant factor that
triggers corrosion of steel reinforcement in shield tunnel pipe segments, thus impacting their durability.
The common cause of durability failure in concrete structures is the intrusion of mediums such as gases
and liquids, in other words, the permeation and diffusion of various external harmful substances like
liquids, gases, and ions in concrete[1]. CIPR is the primary line of defense for ensuring concrete
durability and serves as a critical evaluation indicator for its long-term performance. Scholars such as
Academician Zhongwei Wu and others believe that improving the CIPR of concrete is key to enhancing
its durability[2]. Consequently, studying the CIPR of concrete used in shield tunnel segments holds great
significance in ensuring the safe operation of the segments and shield tunnel.

Many scholars at home and abroad have conducted experimental research on the resistance of
concrete to chloride ion penetration. For example, Yanru Wang (2019) studied the water absorption and
chloride diffusion rate of concrete under the coupling effect of uniaxial compressive load and
freeze-thaw cycles[3]. Song Gao (2022) et al. investigated the chloride ion diffusion performance of
recycled aggregate concrete[4]. Yuanzhan Wang (2020) studied the mechanical properties and chloride
permeability of concrete made with fly ash and coal gangue mixture[5]. In the above studies, the rapid
chloride migration (RCM) test is the most commonly used experimental method, typically employed to
measure CIPC. It has the advantages of short testing time, good repeatability, and results that closely
resemble actual conditions.

The aforementioned experimental studies have laid the foundation for understanding the
permeability of concrete to chloride ions. However, these experiments are time-consuming, costly, and
have limitations in accurately considering multiple factors and their nonlinear relationships, which
restrict their practical application. With the development of artificial intelligence, machine learning
methods have provided a new approach to solving complex nonlinear engineering prediction
problems[6]. Machine learning algorithms (ML) possess powerful data processing capabilities and are
suitable for solving complex nonlinear problems with multiple factors, making them widely used in
research related to engineering.

Various machine learning algorithms, such as BP[7]，ANN[8] , and Support Vector Machine (SVM)[9]
have been widely used in concrete performance prediction[10]. ANN and BP have excessive data
requirements, tend to fall into local optima, and are also sensitive to initialization and
hyperparameters[11]. SVM prediction algorithm is more troublesome in preprocessing data and tuning
parameters, and is more sensitive to missing data[12]. LGBM algorithm significantly improves the
training speed of the algorithm and picks to avoid the overfitting problem to a certain extent. Therefore,
it is feasible to use the LGBM algorithm for CIPC prediction to obtain the fitness function.

Furthermore, the performance of the LGBM algorithm's predictions is directly influenced by the
selection of hyperparameters. To optimize the prediction results, careful parameter tuning is required
for the LGBM algorithm. Commonly used methods for optimizing the hyperparameters of LGBM include
Grid Search (GS)[13], Random Search (RS)[14], and Bayesian Optimization (BO)[15]. Among these three
optimization methods, GS takes too long to train[16], RS tends to fall into local optimum[17], and BO
optimization is widely used to solve the parameter combination optimization problem for it finds the
optimal solution of hyperparameters quickly and accurately[18, 19].

From the analysis provided, the primary research questions can be summarized as: (1) How to
establish an intelligent forecasting framework for concrete CIPC? (2) How can we establish a fast and
accurate nonlinear mapping relationship between concrete's CIPC and its main influencing parameters
for predicting CIPC efficiently? To this end, this study presents a framework for predicting CIPC of
concrete. The main contributions of this study include:

(1) BO can effectively search and optimize the hyperparameters in LGBM. Within 100 iterations, BO
optimization can search the hyperparameters effectively and find the optimal solution quickly.

(2) The constructed BO-LGBM model has the best fitting effect. Compared with other prediction
models, the BO-LGBM algorithm predicts the results with the smallest RMSE and MAE, and biggest R2.
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(3)A hybrid intelligent prediction framework for CIPC was developed and provided a basis for the
intelligent prediction of concrete CIPC.

The implementation of this research framework is organized as follows. Part 2 introduces the
BO-LGBMmixed prediction framework of the CIPC for concrete. Next, Section 3 analyzes the application
of the BO-LGBMmodel in practical projects. The relevant studies are discussed in Section 4. Finally, Part
5 summarizes the full text and looks forward to the future work.

Methodology

The flow chart of the developed BO-LGBM prediction model of concrete CIPC is present in Figure 1.It
consists of three primary steps: creating a sample dataset, building a prediction model, and evaluating
the model's performance.

Establishment of BO-LGBM

Figure 1. Flowchart of the CIPC regression model based on BO-LGBM

Dataset acquisition

Many factors affect the concrete CIPR, for instance, cement, additives, and the water-binder ratio. The
relationships among these agents and the CIPC is not only a multiple nonlinear relationship but also has
a great impact on the performance of concrete[20]. This paper selects the commonly used parameters
that influence the CIPR of concrete[21], the output index is the CIPC, constructs an initial index system,
conducts related experiments, collects statistical data, and uses the corresponding data as the original
dataset.

Hyperparameter optimization

Principles of BO optimization

The BO optimization process involves two key components: the statistical model used to construct the
objective function and the acquisition function utilized to determine the next sampling point. To be as
close as possible to the real objective function, the BO algorithm uses Gaussian Process (GP) agent
model. During cross-validation, the relationship between the chosen hyperparameters and the
predicted performance can be visualized through a GP model mapping with a confidence interval for
each inference. In general, calculating and adding the probability of each feature in a GP model requires
constructing the covariance matrix. Eq. (1) displays the final multivariate GP model [22]：

� � = 1

2�
�
2 ���

1
2
exp − 1

2
� − � ���� � − � −1 (1)

where � (mean) and ��� (covariance) are seen Eqs. (2) and (3):
� = 1

� �=1
� ��� (2)



Advanced Journal of Engineering https://doi.org/10.55571/aje.2023028

- 40 -

��� = 1
� �=1

� (�� − �)� (�� − �)� (3)
An acquisition function is employed to ameliorate for each sampling point. Expected Improvement

(EI) is utilized within the acquisition function to identify the parameter with the best accuracy and
designate it as the final parameter. Mathematically, this can be represented as Eq. (4)[23]:

�� �� = ����� − � �� � �����−� ��
� ��

+ � �� � �����−� ��
� ��

(4)

In the equation, � �����−� ��
� ��

represents the cumulative probability distribution, while

� �����−� ��
� ��

represents the probability distribution function of the standard Gaussian distribution.
Here, �� refers to the nth sampling point, and ����� represents the best tentative optimum within the
current sample space.

LGBM hyperparameters

The settings of hyperparameters directly affect the performance of LGBM prediction models[24, 25].
Parameter tuning is essential to enhance the prediction performance of the LGBM algorithm. Herein, BO,
currently widely used, is used to optimize the performance of prediction algorithm. The
hyperparameters of machine learning algorithms used in this paper is given in Table 1. The first
parameter is learning_rate, which controls the step size used in the gradient descent optimization. The
second parameter is num_leaves, which controls the upper limit of the number of leaves allowed in each
tree. The third parameter, max_depth, is chosen to determine and regulate the maximum depth of each
tree in the fusion. A large learning_rate will result in the model exceeding the optimal solution, while a
small one will result in slow convergence, and too high num_leaves and max_depth may result in
overfitting, while too lowmay result in underfitting[26].

Table 1. LGBM algorithm hyperparameters
Machine Learning Algorithms Hyperparameters to be optimized Definition

LGBM
learning_rate Rate of learning
num_leaves Number of leaves per decision tree
max_depth Maximum depth

BO-LGBM Prediction Algorithm

LGBM

LGBM incorporates several key concepts such as histogram algorithms, depth-constrained leaf growth
strategies, support for categorical features, histogram feature optimization, gradient-based unilateral
sampling techniques, multithreading optimization, and cache hit rate optimization. In the LGBM
algorithm, the target value is denoted as �� , the predicted value as �

∧
�
� , S denotes the number of leaf

nodes, � denotes the structural function of the tree, and � denotes the leaf weights. The objective
function of the model is given by Eq. (5)[27]:
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∧
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Expanding the objective function through Taylor's formula provides Eqs. (6), (7), (8).
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In Eqs. (7), (8), and (9), the final objective function of the LGBMmodel is obtained by traversing all
leaf nodes using the accumulation of � samples, as shown in Eq. (9):
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where �� = �∈��

��� , �� = �∈��
ℎ�� , � is the set of samples in leaf node �. The pseudo-code is shown

in Table 2.
Table 2. BO-LGBM pseudo-codes

Algorithm 1: Bayesian algorithm
Input: �� and � (maximum iterations)
Output: �

1 For � = 1,2,3, … , � do
2 Find �,by optimizing the acquisition function over the GP:

3
�, = arg max �, �(�|�1:�−1)
Get a new sample (��, �(��))

4 Augment the data �1:�={�1:�−1, (��, �(��))}
10 End
Algorithm 2: LGBM algorithm

Input: two individuals � and �
Output:whether � ��������� �

1 Foreach ��������� � do
2 ������_���� = �����
3 ��������

� = ���� ���������� �����(�)
4 ��������

� = ���� ���������� �����(�)
5 If ��������

� < ��������
� then Assuming that higher fitness corresponds to better performance.

6 Return � �����'� �������� �
7 Else if ��������

� > ��������
� then

8 ������_���� = ����
9 End
10 End
11 If ������_���� = ���� then
12 Return � ��������� �
13 Else
14 Return � �����'� �������� �
15 End

Evaluation of model accuracy

The prediction effect of the model was evaluated comprehensively from the aspects of accuracy and
stability, and three evaluation indexes, RMSE, MAE and R2, were selected. RMSE, MAE, and R2 can be
calculated according to Eqs. (10), (11), and (12), respectively[28]:

RMSE = �=1
� (����−�����)� 2

�
(10)

MAE = i=1
n |yobs−ypred|�

n
(11)

R2 = 1 − �=1
� (����−�����)�

2

�=1
� (����−����)�

2 (12)

where ���� and ����� represent the observed and predicted values of the sample, respectively,
����� ���� represents the mean of the sample observations, and � represents the total number of samples.
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Case study

Project context

The project is situated in a cold and saline area in the northeast region of China. Therefore, in order to
solve the problem of saline-alkali corrosion, concrete must have a high resistance to chloride ion
permeability. To facilitate the early-stage construction, it is necessary to optimize the concrete mix ratio,
this paper obtains the test data based on the mix ratio test of expressway concrete raw materials.
Chloride permeability test is shown in Figure 2. Taking C50 concrete as the object, the proposed ML
algorithm predicts the CIPC of concrete effectively.

Figure 2. Chloride permeability test

Establish a sample dataset

Based on extensive literature and practical engineering experience[29], six factors including
water-binder ratio ( �6 ), cement content( �1 ), fly ash content( �2 ), fine aggregate( �4 ), coarse
aggregate( �3 ), and compound superplasticizer( �5 ) have been identified to influence the CIPR of
concrete. These factors are used as input variables in the construction of the primary indicator system
for CIPC, with the CIPC selected as the factor variable. To conduct the study, 120 sets of orthogonal test
data are obtained from actual projects. Among these, 96 sets are utilized as the training sample set,
while 24 sets are allocated as the inspection sample set. The training set is utilized to determine the
parameter selection for the LGBM model and build the model. The test set is then used to evaluate and
validate the prediction performance of the model. Table 1 provides details of the sample data. Due to
limited space, not all datasets are outlined in detail in this paper. However, the complete datasets can be
obtained upon reasonable request to the corresponding authors of this paper.

Table 1. Concrete CIPR data
�1 �2 �3 �4 �5 �6 y
380 61 1128 685 0.9 0.34 1.35
384 57 1132 693 1.0 0.34 1.60
397 32 1117 679 0.9 0.35 1.85
... ... ... ... ... ... ...
335 59 1151 705 0.8 0.36 3.92
335 59 1151 705 1.2 0.36 3.87
335 59 1151 705 1 0.36 3.81
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LGBM parameter setting

The model's parameters were adjusted to enhance the prediction accuracy of the CIPC. The search
process of hyperparameter BO optimization is described in Figure 3, and the optimal hyperparameters
with the highest prediction accuracy are shown in Table 2.

Table 2. Optimal hyperparameters for the highest measurement accuracy
Algorithm Hyperparameter Selection Optimal Hyperparameters

LGBM

colsample-bytree 0.562
learning-rate 0.033
minibatch_frac 0.46
n_estimators 180

Figure 3. BO optimized hyperparameter search graph of CIPC
The BO algorithm has a good effect on the optimization of hyperparameters. According to the
hyperparameter search graph, it can be seen that all three objectives obtain the best hyperparameters
with 57 iterations, which indicates that BO optimization can search the hyperparameters effectively and
find the optimal solution quickly.

Evaluation of BO-LGBM prediction results

The regression test results were obtained by optimizing LGBM parameters and modeling the training
and test samples. Figure 4(a) and Figure 4(b) display the regression fitting curve for the training sample
set and the prediction result of the regression fitting for the test sample set, respectively. The obtained
results are as follows:

(1) The difference between the forecasted and actual values of the CIPC using LGBM is minimal.
The RMSE between the real and predicted values for the CIPC in the training set is 0.045, while the
RMSE in the test set is 0.098.

(2) The BO-LGBM prediction model exhibits a strong fit. The R² between the actual and predicted
values of the CIPC in the training set is 0.974, while in the test set it is 0.955. These findings
demonstrate that LGBM is a highly accurate predictor.
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a. Fitting results of samples b. prediction results
Figure 4. The prediction result and prediction fitting result of CE

Discussion

Correlation analysis

In this paper, The Pearson correlation coefficient (PCC) is utilized to analyze the linear relationship
between different mix proportion factors and concrete CIPR, revealing the correlation. The correlation
between influencing factors and CIPR can be analyzed using the Pearson function. Figure 6 presents the
PCCs between the calculated characteristic variables, displaying the correlation graph results between
the variables generated by software. Blue indicates a strong positive correlation between the variables,
while red indicates a negative correlation. The darkness of the square and the size of the diameter
indicate the absolute value of the PCC between the two variables, reflecting the intensity of the
correlation; and vice versa, the weaker the correlation degree.

Figure 6 shows that (1) The input parameters exhibit a weak correlation with no apparent coupling
phenomenon. The correlation coefficient among the six parameters in Figure 6 is relatively small,
indicating that there will be no obvious coupling phenomenon between the parameters, and the
prediction results are reliable.(2) Lowering the water-binder ratio and reducing the amount of cement
can enhance the CIPR of concrete. The correlation coefficients between the water-binder ratio and
cement dosage, and the CIPC are 59% and -45%, respectively. This suggests a positive correlation
between the CIPC of concrete and the water-binder ratio, a negative correlation between the CIPC of
concrete and cement dosage within certain limits. Thus, in practical projects, emphasizing the reduction
of the water-binder ratio can be a priority in improving the CIPR of concrete. At the same time, the
amount of fly ash should be controlled.

Figure 6. The correlation between the variables
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Prediction accuracy analysis

To further prove the credibility of the LGBM, SVM, BP and GBDT models are used to forecast the CIPR of
concrete. For comparative analysis, the RMSE and certainty coefficient are chosen to weighs the
predictive impact of the model. The aberration correlation of the prediction results of the various
models is shown in Table 2.

Table 2 highlights the following findings: (1) The LGBM prediction model exhibits the lowest RMSE,
closest to 0, compared to other models. In the training set, the RMSE of LGBM is 0.045, while in the test
set, it is only 0.096, significantly outperforming other models. This indicates that the LGBMmodel yields
predictions closest to the actual values and has the highest prediction accuracy. (2) The LGBM model
achieves the largest R², closest to 1. Both in the training set and test set, the R² values of the LGBM
prediction model are 0.967 and 0.959, respectively, surpassing the values of other models. This implies
that the LGBM model provides the best fit to the data and exhibits the most accurate predictive
performance. (3)The LGBM algorithm proves its adaptability and superiority in forecasting concrete
CIPR. This assertion is supported by the findings of other researchers.In summary, the LGBM prediction
model demonstrates superior performance in terms of accuracy, fit to the data, and prediction
effectiveness for concrete CIPC. For instance, through comparing the prediction performance of five
machine learning algorithms, Zhang obtained that the prediction precision of the LGBM is more
excellent than that of the other algorithms [30].

Table 2 Error comparison
Model RMSE R2

Training set Test set Training set Test set
LGBM 0.045 0.098 0.974 0.955
SVM 0.41 0.322 0.888 0.882
BP 0.57 0.471 0.855 0.836

GBDT 0.087 0.224 0.922 0.911

Conclusion

To accurately and efficiently predict the CIPC of concrete, it is crucial to understand the significance of
factors associated with CIPC, especially in complex and extreme environments. This study proposes an
intelligent prediction model of concrete CIPC based on BO-LGBM algorithm. Using a national key project
as a case study, the method's effectiveness was verified, leading to the following main conclusions:

(1) BO can effectively search and optimize the hyperparameters of LGBM. Within 100 iterations, BO
optimization can search the hyperparameters effectively and find the optimal solution quickly.

(2)BO-LGBM can effectively predict CIPC of concrete. On the test set, RMSE is 0.098, R² is 0.955.
Compared with SVM, BP and GBDT model, LGBM has higher prediction accuracy and smaller error.

(3) The BO-LGBM model can be utilized to adjust the concrete mix ratio and control the concrete
quality in practical projects. The conclusion can provide guidance for intelligent prediction of other
properties of concrete.

The method was successfully applied to the case project, resulting in a good CIPC of concrete.
Therefore, this algorithm holds considerable potential for practical application in engineering
production projects. While this study focused on the principles influencing the CIPC at the concrete
material mix proportion level, it is worth noting that concrete curing measures also play a role in the
CIPC. Moving forward, it is important to consider additional factors.
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Nomenclature

BO Bayesian Optimization
GS Grid search
RS Random search
LGBM Light Gradient Boosting Machine
- Cement(�1), kg/m3

- Fly ash(�2), kg/m3

- coarse aggregate(�3), kg/m3

- fine aggregate(�4), kg/m3

- water-binder ratio(�5)
-
CIPC

compound superplasticizer(�6),%
Chloride ion permeability coefficient(y), 10-12 cm2/s

CIPR Chloride ion penetration resistance
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